attributed to a strong trans effect, which has already been observed in this type of compound (Rieskamp \& Mattes, 1976).

Ammonium ions bind the anionic chains together with the contact distances given in Table 2. Each ammonium ion is coordinated by eight F and two O atoms.

The financial support by the Research Council of Slovenia is gratefully acknowledged.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Davidovič, R. L., Harlamova, L. G. \& Samarec, L. V. (1977). Koord. Khim. 3, 850-856.

Hazell, A. C. (1963). J. Chem. Soc. pp. 5745-5752.
Oughtred, R. E., Raper, E. S. \& Shearer, h. M. M. (1976). Acta Cryst. B32, 82-87.

Rieskamp, H. \& Mattes, R. (1976). Z. Naturforsch. Teil B, 31, 537-540.
Stewart, J. M., Kruger, G. J., Ammon, h. L., Dickinson, C. \& Hall, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1980). B36, 1927-1929

Structure of and Hydrogen Bonding in Dicaesium Aquapentachloroferrate(III)

By J. E. Greedan, Daniel C. Hewitt, Romolo Faggiani and I. D. Brown
Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1

(Received 24 August 1979; accepted 8 April 1980)

Abstract

Cs}_{2}\left[\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\), orthorhombic, Cmcm , $a=$ 7.426 (4), $b=17.306$ (7), $c=8.064$ (2) $\AA, Z=4$, $D_{x}=3.301 \mathrm{Mg} \mathrm{m}^{-3} .539$ observed reflections at $T=$ 243 K using Mo $K a$ radiation were used to refine the structure to $R_{w}=0.027$. H atoms were located and their positions refined. The compound is isostructural with $\mathrm{Cs}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

Introduction. During attempts to prepare crystals of $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{FeCl}_{6}\right]$ by slow evaporation of a $2 M \mathrm{HCl}$ solution of $\mathrm{NaCl}, \mathrm{CsCl}$, and $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in appropriate amounts (Morss, Siegal, Stenger \& Edelstein, 1970), we noted the presence of three crystalline phases: colourless cubes of NaCl , small (~ 1 mm) orange octahedra of $\mathrm{Cs}_{2} \mathrm{Na}\left[\mathrm{FeCl}_{6}\right]$, and large (several mm) red-orange acicular crystals of a hitherto unknown composition. These acicular crystals were found to contain Cs, Cl and Fe but no Na by emission spectrographic analysis. Subsequently, Cl was determined by Mohr titration, Fe by atomic absorption, and Cs by neutron activation analysis, giving Cl 35.0 Fe 10.0 and Cs 53.2% compared to expected values for $\mathrm{Cs}_{2}\left[\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ of $\mathrm{Cl} 34 \cdot 28$, $\mathrm{Fe} 10 \cdot 80$, $\mathrm{Cs} 51 \cdot 37 \%$. Water was detected from characteristic bands in the infrared spectrum of powdered crystals.

Precession photographs showed orthorhombic symmetry with systematic absences $h k l: h+k=2 n+$ $1 ; h 0 l: l=2 n+1$ suggesting space groups Cmcm , C 2 cm or Cmc 2 . Structure refinement confirms the
choice of Cmcm . An acicular crystal elongated along [010] of approximately cylindrical cross section and dimensions 0.125 mm in diameter $\times 1 \mathrm{~mm}$ in length was chosen for diffraction measurements on a Syntex $P 2$ diffractometer. The crystal was cooled to 243 K in a stream of nitrogen in order to obtain accurate parameters. Cell dimensions were obtained by leastsquares refinement of 15 well centred reflections with $2 \theta>20^{\circ}$ using monochromatized Mo $K c$ radiation (λ $=0.71069 \AA$). The intensities of 1330 reflections with 0 $\leq h \leq 9,0 \leq k \leq 22,0 \geq l \geq-10$ were measured using a $\theta / 2 \theta$ scan mode. Two standard reflections (131 and 042) measured at regular intervals showed no significant variation. Equivalent reflections were averaged to give 669 unique reflections. Of these, 539 had $I>3 \sigma(I)$ and were classed as observed. Intensities were corrected for Lorentz and polarization effects. Absorption corrections were not considered necessary ($\mu R=0.52$ for the cylinder; maximum transmission coefficient $=0.45$, minimum $=0.37$).

The structure was assumed to be similar to $\mathrm{Cs}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}$ (Hopkins, Zalkin, Templeton \& Adamson, 1966) which has the same space group and similar lattice constants: $a=7.400$ (4), $b=17.289$ (8), $c=7.986$ (5) \AA. Least-squares refinement of positional and anisotropic temperature parameters of the nonhydrogen atoms and a secondary-extinction coefficient (Larson, 1967) resulted in $R_{1}=\sum\left(| | F_{o}|-k| F_{c}| |\right) /$ $\sum\left|F_{\rho}\right|=0 \cdot 023$. Atomic scattering factors, corrected

Table 1. Fractional atomic coordinates $\left(\times 10^{4}, \times 10^{3}\right.$ for $\mathrm{H})$ with e.s.d.'s and average temperature factors $\left(\AA^{2}\right)$

	x	y	z	$\left\langle U_{i i}\right\rangle$
$\mathrm{Cs}(1)$	0	$4711 \cdot 1(3)$	2500	$0.0234(3)$
$\mathrm{Cs}(2)$	0	$7548 \cdot 5(3)$	2500	$0.0268(3)$
Fe	0	$1218 \cdot 1(6)$	2500	$0.0150(5)$
$\mathrm{Cl}(1)$	0	$2540(1)$	2500	$0.0259(10)$
$\mathrm{Cl}(2)$	$2242(1)$	$1115.6(6)$	$4596(1)$	$0.0264(4)$
O	0	$9961(4)$	2500	$0.029(3)$
H	0	$966(7)$	$170(10)$	0.102

for anomalous dispersion, were taken from Cromer \& Waber (1974). The H atoms were then located from a difference Fourier synthesis. The positions found are close to those suggested for $\mathrm{Cs}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (Hopkins, Zalkin, Templeton \& Adamson, 1966). Final refinement including the positional and isotropic temperature factors for the H atoms gave the atomic parameters listed in Table 1, with $R_{1}=0.021$ and $R_{w}=$ $\left[\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}=0.027$, where $w=\left[\sigma^{2}+\right.$ $\left.\left.0.0250 F_{o}\right)^{2}\right]^{-1}$ with σ being the standard error in F_{o} derived from counting statistics.* The average shift on the final cycle of refinement for all non-hydrogen atoms was 21% of the standard error. All refinements were performed with the local program CUDLS (Stephens, 1971).

Discussion. After the completion of our work we became aware of an independent determination of the structure by O'Connor, Deaver \& Sinn (1979). The two determinations are in basic agreement although O'Connor et al. did not report the positions of the H atoms and their reported standard errors are four to five times larger than ours. The temperature factors in the two determinations, however, show systematic differences. The value of $\Delta=\left\langle U_{a}-U_{b}\right\rangle$ (where a refers to our results, b to those of O'Connor et al. and the average is performed over values for Cs, Fe and Cl) is +0.0059 for $U_{11},-0.0008$ for U_{22} and $+0.0023 \AA^{2}$ for U_{33}. Since we worked at low temperatures one would expect Δ to be negative and our neglect of absorption corrections should make Δ_{11} and Δ_{33} slightly more negative ($\lesssim 0.0007$) and Δ_{22} more positive ($\lesssim 0.0050 \AA^{2}$). Since the discrepancy in all cases is in the opposite sense the reason for it must be sought in the results of O'Connor et al. Their crystal was an (010) plate about 0.5 mm across and 0.1 mm thick and their transmission coefficients ranged from 0.45 to 0.05 . They imply that absorption corrections were made but because of the shape and size of their crystal an error of

[^0]Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cs}(1)-\mathrm{Cl}(2)$	$3.424(1) \times 4$	$\mathrm{Cs}(2)-\mathrm{Cl}(2)$	$3.633(1) \times 4$
$\mathrm{Cs}(1)-\mathrm{Cl}(2)$	$3.600(1) \times 4$	$\mathrm{Cs}(2)-\mathrm{Cl}(2)$	$3.688(1) \times 4$
$\mathrm{Cs}(1)-\mathrm{O}$	$3.738(2) \times 4$	$\mathrm{Cs}(2)-\mathrm{Cl}(1)$	$3.713(2) \times 4$
$\mathrm{Cs}(1)-\mathrm{Cl}(1)$	$3.757(2)$	$\mathrm{Cl}(2)-\mathrm{Cl}(2)$	$3.380(1)$
$\mathrm{Fe}-\mathrm{Cl}(2)$	$2.379(1) \times 4$	$\mathrm{Cl}(2)-\mathrm{Cl}(2)$	$3.330(2)$
$\mathrm{Fe}-\mathrm{Cl}(1)$	$2.288(2)$	$\mathrm{Cl}(2)-\mathrm{O}$	$3.102(5)$
$\mathrm{Fe}-\mathrm{O}$	$2.176(7)$	$\mathrm{Cl}(2)-\mathrm{Cl}(1)$	$3.421(2)$
$\mathrm{O}-\mathrm{H}$	$0.83(10)$		
$\mathrm{H}-\mathrm{Cl}(2)$	$2.73(8) \times 2$		
$\mathrm{H}-\mathrm{Cl}(2)^{\prime}$	$3.20(10) \times 2$		
$\mathrm{Cl}(2)-\mathrm{Fe}-\mathrm{Cl}(1)$	$94.3(1)$	$\mathrm{H}-\mathrm{O}-\mathrm{H}$	$102.2(10)$
$\mathrm{Cl}(2)-\mathrm{Fe}-\mathrm{O}$	$85.7(1)$	$\mathrm{O}-\mathrm{H}-\mathrm{Cl}(2)^{*}$	$142.4(4)$
$\mathrm{Cl}(2)-\mathrm{Fe}-\mathrm{Cl}(2)$	$88.9(1)$	$\mathrm{O}-\mathrm{H}-\mathrm{Cl}(2)^{\prime}$	$76.1(73)$

This is probably related to the spin states of the ions. Mössbauer measurements performed here on $\mathrm{Cs}_{2}\left[\mathrm{FeCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ indicate the high-spin state for $\mathrm{Fe}^{\mathrm{III}}$ ($3 d^{5}$) while susceptibility measurements (Buschbeck \& Hartmann, 1957) confirm a low-spin state for $\mathrm{Ru}^{\text {III }}$ (4d d^{5} in $\mathrm{Cs}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$.

We thank Mr H. F. Gibbs for assistance with the chemical analysis, Professor T. Birchall for the Mössbauer data, and the Institute for Materials Research of McMaster University and the National Science and Engineering Research Council of Canada for financial support. We wish to thank Professor P. J. McCarthy for suggesting this problem.

References

Abrahams, S. C. \& Keve, K. T. (1971). Acta Cryst. A27, 157-165.
Buschbeck, C. \& Hartmann, H. (1957). Z. Phys. Chem. (Frankfurt am Main), 11, 120-135.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 72-99. Birmingham: Kynoch Press.
Hopkins, T. E., Zalkin, A., Templeton, D. H. \& Adamson, M. G. (1966). Inorg. Chem. 5, 1431-1433.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Morss, L. R., Siegal, M., Stenger, L. \& Edelstein, N. (1970). Inorg. Chem. 9, 1771-1775.

O'Connor, C. J., Deaver, B. S. \& Sinn, E. (1979). J. Chem. Phys. 70, 5161-5167.
Stephens, J. S. (1971). Unpublished work.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35270 (5 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

